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The purpose of this letter is the study of the properties of the periodic solutions to
non-linear oscillator equations for which the elastic restoring forces are non-polynomial
functions of the displacement. In particular, this term is selected to be

f (x)"!x���. (1)

The work reported here extends that presented in reference [1] which was concerned with,
"rst, showing that the equation

xG#x���"0 (2)

has all periodic solutions and, second, constructing analytical approximations to these
solutions using the method of harmonic balance [2] in the lowest approximation.

To proceed, a second order harmonic balance solution will "rst be calculated for
equation (4). This approximation to the solution takes the form [2]

x (t)KA cos(�t)#B cos(3�t), (3)

where the following initial conditions are used:

x(0)"x
�
"given, xR (0)"0, (4)

and the "rst and second derivatives are taken to be [2]

xR (t)K!�A sin(�t)!3�B sin(3�t), (5a)

xK (t)K!��A sin(�t)!9��B sin(3�t). (5b)

The parameters (A, B, �) are to be given in terms of x
�
. The calculation begins by rewriting

equation (2) as

(xK )�"!x. (6)
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Substituting equation (3) into equation (6) gives

�����
3

4�A�#�
27

4 �A�B#�
243

2 �AB��!A� cos(�t)

#����
A�

4
#�

2187

4 �B�#�
27

2 �A�B�!B� cos(3�t) (7)

#(higher order harmonics)"0.

De"ne H
�
(A, B, �) and H

�
(A, B, �) to be, respectively, the coe$cients of cos(�t) and

cos(3�t). The harmonic balance method requires

H
�
(A, B, �)"0, H

�
(A, B, �)"0. (8)

Eliminating �� in equations (8) gives, after some algebraic manipulation, the result

A�#(51)A�B!(27)AB�#(1701)B�"0. (9)

Let z,B/A, then this equation becomes

(1701)z�!(27)z�#(51)z#1"0. (10)

The required solution in z is the one having the smallest absolute magnitude. An excellent
approximation to this root is [2]

zN K!

1

51
. (11)

Replacing, in H
�
(A, B, �), B by zNA and solving for � gives

�"

1

[(�
�
)#(��

�
)zN #(���

�
)zN �]���A���

. (12)

It should be noted that the expression of equation (4) automatically satis"es xR (0)"0. The
other initial condition, x (0)"x

�
, yields the result

A(1#zN )"x
�

or A"

x
�

1#zN
. (13)

Consequently, the second order harmonic balance approximation to the periodic solution
of equation (2) is

x(t)K�
x
�

1#zN � [cos (�t)#zN cos(3�t)], (14)

where

�(x
�
)"

1

[(�
�
)#(��

�
)zN #(���

�
)zN �]����

1#zN
x
�
�
���

. (15)
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Comparing equations (14) and (15) with equations (17) and (18) of reference [1], it is clearly
seen that the second harmonic balance approximation only provides small corrections to
the periodic solution obtained in the "rst approximation. This is the expected result.

The second equation to be studied is a modi"ed version of the van der Pol equation, i.e.,

xK#x���"�(1!x� )xR , �'0. (16)

Written in the form of two "rst order di!erential equations

dx

dt
"y,

dy

dt
"!x���#� (1!x�)y, (17)

it follows that only one "xed-point exists and it is located in the (x, y) phase-plane at (0, 0).
The following argument shows that the "xed-point is unstable. Consider the following
function of x and y,

<(x, y)"ay�#bx�#cx���, (18)

where a*0, b*0, c*0. Taking the derivative with respect to time gives

d<

dt
"2ay

dy

dt
#2bx

dx

dt
#�

4c

3 �x���
dx

dt
. (19)

Using equation (17) in equation (19) yields

d<

dt
"yx����

4c

3
!2a�#2a�y�#2bxy. (20)

By selecting

a"
1

2
, b"0, c"

3

4
, (21)

it follows that

< (x, y)"�
1

2� y�#�
3

4�x���,
d<

dt
"�y�*0. (22a, b)

Consequently, the "xed-point, (0, 0), is unstable [3]. Inspection of equation (16) shows that
it is of the form for which the Lienard}Levinson}Smith theorem can be applied [4].
Therefore, it can be concluded that equation (16) has a unique, stable limit-cycle toward
which all other trajectories asymptotically approach as tPR.

The method of harmonic balance can again be used to calculate an analytical
approximation to the limit-cycle of equation (16). In order to do so, this equation requires to
be rewritten in the form:

[!xK#�(1!x�)xR ]�"x. (23)

For the "rst approximation,

x(t)KA cos �t. (24)
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Substitution of equation (23) into equation (22) and assuming that 0(��1, the following
result is obtained:

H
�
(A, �, �) cos �t#H

�
(A, �, �) sin �t#(higher order harmonics)"0, (25)

where

H
�
(A, �, �)"

3��A�

4
!A, H

�
(A, �, �)"�

3�	�A�

4 ��1!

A�

2 � . (26)

Setting H
�
"0 and H

�
"0, "rst gives A"0 corresponding to the unstable "xed-point at

(xN , yN )"(0, 0). A second solution is

A"�2, �"�
4

6�
���

, (27)

which gives

x (t)K�2 cos��
4

6�
���
t�, (28)

as the "rst harmonic balance approximation to the limit-cycle solution to equation (16).
In summary, a second order harmonic balance solution has been calculated to

a non-linear conservative oscillator having a fractional power force, i.e., equation (2).
A study was also made of a related Van der Pol-type non-linear oscillator, equation (16).
After showing that a unique, stable limit cycle exists, harmonic balance was used to
determine an approximation to the limit cycle.

Currently, the following third order equation is being investigated:

x2#xR #� (x���!x�)"0, �'0. (29)

The form of this equation is motivated by a &&similar'' third order di!erential equation [5]

x2#xR #� (x!x�)"0, �'0, (30)

which models oscillations of a certain class of stars. It is known that equation (30) has three
"xed-points and a stable small amplitude limit cycle. The issue to be studied is whether the
solutions of equation (29) has these properties.
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